
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

This project explores the application of deep learning models for 

automatic facial expression classification. Using the dataset from a 

Kaggle competition, I developed, trained, and optimized a 

convolutional neural network (CNN) using PyTorch to classify 

facial expressions into three categories: Angry, Happy, and Neutral. 

I experimented with various techniques like data augmentation,

Leaky ReLU activation, and dropout. These and more helped me 

achieve an accuracy and Kaggle public score of 0.82244 on the test 

set. This poster discusses the model design, training process, and 

methods that I used and altered to complete this assignment.

ABSTRACT

OBJECTIVES

Improvements from Previous Models:

• Leaky ReLU

• After doing research about the best activation 

functions for image classification, I chose ReLU, but 

my final test accuracy was still under the baseline 

score of 0.76696. I read that a common error is the 

“dying ReLU problem”, so I decided to implement 

the Leaky version, I then saw minor improvements 

the next time I ran my notebook.

• Transforms

• After looking at Week 4’s Python Notebook 11 from 

this course’s Canvas page, “11 - Dataset and 

Transforms”, I noticed that I did not include 

transforming in my own, so I augmented the data 

with flips and rotations on the training data, and 

normalizations on both the training and testing data.

MATERIALS AND METHODS

The final iteration of my model achieved a validation accuracy of 

81.11% after 20 epochs. The final test set accuracy I achieved on 

Kaggle after 10 submissions was a score of 0.82244. I believe that

my choice to include data augmentation, an optimal activation 

function, and tweaks to my batch sizes significantly improved the 

model’s generalization capabilities and accuracy.

RESULTS

CONCLUSIONS

In this assignment, I successfully implemented a CNN-based 

approach for facial expression classification, achieving a high

accuracy that I’m very satisfied with. In future iterations, I’d like 

to find more ways to speed up the training process and try out pre-

trained models. In summary, this project taught me the importance 

of using the right techniques to prevent overfitting and how the 

design of the model affects its overall performance. It also showed 

me that making gradual improvements here and there through 

testing and tweaking is key for getting the best results.

REFERENCES

1. https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53ref

2. https://saturncloud.io/blog/how-to-do-gradient-clipping-in-

pytorch/

3. https://medium.com/@gauravnair/the-spark-your-neural-

network-needs-understanding-the-significance-of-activation-

functions-6b82d5f27fbf#57ea

ACKNOWLEDGMENTS

I would like to acknowledge these blogs & posts that helped me 

implement:

• Gradient clipping

• Dropout

• Leaky ReLU

1. Develop a CNN model for classifying facial expressions into 

categories: 0-Angry, 1-Happy, and 2-Neutral. 

2. Improve model performance through data augmentation and 

regularization techniques. 

3. Evaluate the model’s accuracy and generalization on the test set,

then continue optimizing until a satisfactory score is reached.

CS4210 - California Polytechnic State University, Pomona

By Kevin Wong
Facial Expression Classification Using PyTorch & Deep Learning

INTRODUCTION

Facial expression classification is a challenging problem with 

significant uses for human-computer interaction, emotion analysis, 

and various applications in entertainment and customer service. 

Accurately recognizing and categorizing human emotions through 

facial expressions can greatly enhance user experiences and enable 

more intuitive interfaces for companies to develop and improve 

upon.

CNNs excel at getting hierarchical features from images, however, 

achieving high accuracy is still difficult because of the small 

differences in facial expressions and the risk for overfitting on 

limited datasets. This project improves a CNN model for facial 

expression classification by using a wide range of techniques to 

boost performance and accuracy.

For this assignment, we were given a dataset containing 16,175 

training examples and 3,965 test examples, each representing a 

48x48 image of a facial expression. 

The CNN architecture consisted of four convolutional layers 

followed by batch normalization, Leaky ReLU activation 

functions, and a dropout layer to prevent overfitting. 

Data augmentation techniques such as random rotation and 

horizontal flip were applied to improve model generalization. 

The model was also trained using the Adam optimizer with a 

learning rate of 0.001.

• Gradient Clipping

• I researched other common issues with low 

accuracy on the training model, so after reading a 

blog from Neptune.ai, I learned that with very deep 

neural networks, gradients can become too large 

and “explode” , so gradient clipping caps the 

gradients at a maximum value.

• Increased Batch Sizes

• Another area I saw that I could improve on was the 

batch size, because when they’re too small, it may 

cause instability in training, and if they’re too large, 

it could lead to poorer generalization. Firstly, I had 

a batch size of 64, then changed it to 32, but the 

accuracy dipped, so I then chose a mini-batch size 

of 128, and my accuracy increased slightly. 

• Dropout 

• In Lecture 8 – Neural Networks (IV) from Week 4, 

we learned about how dropout changes the 

network’s structure, prevents overfitting, and 

generalizes better to testing data.

Final Kaggle Score

Summer 2024

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53ref
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53ref
https://saturncloud.io/blog/how-to-do-gradient-clipping-in-pytorch/
https://saturncloud.io/blog/how-to-do-gradient-clipping-in-pytorch/
https://medium.com/@gauravnair/the-spark-your-neural-network-needs-understanding-the-significance-of-activation-functions-6b82d5f27fbf#57ea
https://medium.com/@gauravnair/the-spark-your-neural-network-needs-understanding-the-significance-of-activation-functions-6b82d5f27fbf#57ea
https://medium.com/@gauravnair/the-spark-your-neural-network-needs-understanding-the-significance-of-activation-functions-6b82d5f27fbf#57ea
https://stackoverflow.com/questions/54716377/how-to-do-gradient-clipping-in-pytorch
https://www.analyticsvidhya.com/blog/2022/08/dropout-regularization-in-deep-learning/
https://pytorch.org/docs/stable/generated/torch.nn.functional.leaky_relu.html

	Slide 1

